Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Prosthet Dent ; 129(6): 887.e1-887.e10, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37100651

RESUMEN

STATEMENT OF PROBLEM: Previous studies have classified the sagittal root position of the maxillary anterior teeth and measured buccal plate thickness to aid treatment planning. A thin labial wall and buccal concavity may cause buccal perforation, dehiscence, or both in maxillary premolars. However, data on the restoration-driven principle to classify the maxillary premolar region are lacking. PURPOSE: The purpose of this clinical study was to investigate the occurrence of labial bone perforation and implantation into the maxillary sinus between various tooth-alveolar classifications with respect to the crown axis in maxillary premolars. MATERIAL AND METHODS: Cone beam computed tomography images of 399 participants (1596 teeth) were analyzed to determine the probability of labial bone perforation and implantation into the maxillary sinus when associated with variables that included tooth position and tooth-alveolar classification. RESULTS: The morphology in the maxillary premolars was classified as straight, oblique, or boot-shaped. The first premolars were 62.3% straight, 37.0% oblique, and 0.8% boot-shaped, and labial bone perforation occurred in 4.2% (21 of 497) of the straight, 54.2% (160 of 295) of the oblique, and 83.3% (5 of 6) of the boot-shaped first premolars when the virtual implant was 3.5×10 mm. When the virtual tapered implant was 4.3×10 mm, labial bone perforation occurred in 8.5% (42 of 497) of the straight, 68.5% (202 of 295) of the oblique, and 83.3% (5 of 6) of the boot-shaped first premolars. The second premolars were 92.4% straight, 7.5% oblique, and 0.1% boot-shaped, and labial bone perforation occurred in 0.5% (4 of 737) of the straight, 33.3% (20 of 60) of the oblique, and 0% (0 of 1) of the boot-shaped, respectively, when the virtual tapered implant was 3.5×10 mm; and labial bone perforation occurred in 1.3% (10/737) of the straight, 53.3% (32/60) of the oblique, and 100% (1/1) of the boot-shaped second premolars when the virtual tapered implant was 4.3×10 mm. CONCLUSIONS: When an implant is placed in the long axis of a maxillary premolar, the tooth position and tooth-alveolar classification should be considered when assessing the risk of labial bone perforation. Attention should be paid to the implant direction, diameter, and length in the oblique and boot-shaped maxillary premolars.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Seno Maxilar , Humanos , Diente Premolar/diagnóstico por imagen , Seno Maxilar/diagnóstico por imagen , Seno Maxilar/cirugía , Maxilar/diagnóstico por imagen , Maxilar/anatomía & histología , Raíz del Diente/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...